Калькулятор расчета несущей способности винтовых свай

Виды опор и параметры допустимой тяжести

На текущей момент рынок предложений представлен различными типоразмерами винтовых свай, что позволяет выбрать подходящие опорные элементы под конкретные виды возводимых строений.

Площадь лепестковой подошвы – один из определяющих параметров, от которого зависит несущая способность фундамента. Величину рассчитывают по классической формуле:

В частном домостроении в большинстве случаев используют стержни диаметром 59-159 мм. Так, сваи, диаметр которых равен 89 мм, применяют для строительства веранд и беседок.

Сваи с большим диаметром трубы (108–159мм) подходят для строительства кирпичных построек, бань из бруса, одноэтажных домов и двухэтажных каркасных построек. Назначение некоторых свай с типичными параметрами отражены в таблице:

Диаметр ствола, ммДлина сваи, мДиаметр винта, ммТолщина стенки, ммНесущая способность одной сваи, тНазначение фундамента
54, 761,5–4150–2002–30,8–2,5опоры для ограждений, беседок, террас
54–892–3150–2002–32,5–4опорные стенки для борьбы с оползанием грунта
89–1081,5–4200–2503–42–7для уселения проблемных фундаментов
89–1082–4200–2503–44–7для усилия причалов
89–1142–4200–3003–54–8в качестве фундамента для деревянных, каркасных, кирпичных, щитовых домов, бань, хозблоков и других легковесных построек
108–1682–4200–3003,5–35–9в качестве опорных элементов для фундамента, усиленного ростверком

Винтовые сваи с большим диаметром трубы (до 325мм) характеризуются высокими допустимыми нагрузками, что позволяет их использовать для строительства тяжелых конструкций, в том числе промышленных объектов.

Длину столба выбирают, зная глубину промерзания грунта. Для большинства российских регионов для почвы характерна точка промерзания, равная 1,5 м. Поэтому сваи длиной 2–2,5 м (с учетом высоты цоколя) считаются традиционными.

Нагрузки на грунт

В конечном счете, давление от здания, передающееся на сваю, передается на грунт. Поэтому несущая способность сваи – это не только способность материала сваи выдержать те или иные нагрузки, а величина, связывающая как прочность самой сваи, так и прочность грунта.

Несущая нагрузка опоры в общепринятом смысле – это такое давление, которое выдерживает свая от элемента стоящего на ней здания без ее  продвижения вглубь грунта. Другими словами – это способность опоры уравновешивать давление от веса здания и силу сопротивления грунта.

Существует несколько методов определения несущей способности сваи:

Расчетный (теоретический)ДинамическийПробный

Теоретический метод основан на табличных данных СНиП 11-17-77. В них приведены примерные значения несущей способности той или иной сваи в зависимости от того или иного грунта.

Приведем алгоритм расчета несущей способности сваи. Геологические испытания грунта на участке позволяют определить сопротивляемость грунтов. Для этого нужно знать состав грунта на той глубине, на которую погружается свая.

Основные нагрузки на фундамент

Табличные данные, полученные опытным путем, дают возможность оценить сопротивляемость того или иного грунта, то есть его несущую способность.

Приведем некоторые табличные значения из данных по сопротивлению глиняных и песчаных грунтов, наиболее распространенных для возведения зданий (в кг/см2):

Глина – 4-6

Суглинки и супеси – 3-4

Пески средние – 15

Пески мелкие – 8

Пески пылеватые — 5

Насыпной грунт без уплотнения – 1

Насыпной грунт с уплотнением – 1.5

Особенности грунтов в расчете несущей способности свай

Сила F, с которой лопасть сваи давит на грунт, определяется по формуле:

F=S*Ro

S – площадь опоры, т.е. лопасти

Ro – прочностная характеристика грунта

Площадь опоры приблизительно берется равной площади лопасти, в проекции, без учета ее изгиба. Упрощенно для расчета площади берется радиус лопасти, а площадь круга высчитывается по известной формуле S=пR2.

Обычно для свай различных диаметров лопасти выполняются по одним стандартам, т.е ширина лопасти увеличивается с увеличением диаметра трубы. Общепринятые стандарты для лопастей:

  1. Для трубы 89 мм – 250 ммТрубы 108 мм – 300 ммТрубы 133 мм – 350 мм

Следует отметить, что с углублением плотность грунта возрастает, что также вносить изменения в расчеты.

Для упрощения расчетов можно воспользоваться следующей таблицей для наиболее распространенных свай с диаметром 89 и 108 мм с лопастью 300 мм:

Тип грунтаНесущая способность сваи при глубине залегания1,5 м2,0 м2,5 м3,0 мПолутвердая глина4,75,46,06,7Мягкая глина3,74,45,05,8Тугопластичне суглинки3,94,65,36,0Песок средний9,710,411,1Песок мелкий6,37,07,7Песок пылевидный4,95,66,3

Расчет с помощью онлайн-калькулятора

Тип грунта определяется по результатам бурения пробной скважины. Она имеет глубину до появления контакта с плотными слоями, или до момента погружения на достаточную глубину для установки висячих свай.

Некоторую информацию можно получить в местном геологоразведочном управлении, но она будет усредненной и не сможет дать максимально полные данные о качестве и параметрах грунта на данном участке.

Участок способен иметь специфические инженерно-геологические условия, не свойственные данному региону в целом, поэтому всегда следует производить специализированный геологический анализ.

Глубина промерзания грунта — табличное значение, которое находят в приложениях СНиП.

Существует специальная карта, на которой все регионы России разделены на специальные зоны, обладающие соответствующей глубиной промерзания.

Тем не менее, в действующем ныне СП 22.13330.2011 «Основания зданий и сооружений» имеется методика специализированного расчета глубины промерзания, производимого по теплотехническим показателям грунта и самого здания.

Расчет свайно-винтового фундамента: общие сведения

Согласно типовым рекомендациям, указанным в соответствующих СП и СНИП, расчет оснований выполняется следующим образом:

  • В самом начале, на основе инженерно-геологических изысканий, определяют параметры опорного грунта (несущую способность, состав, плотность, физические и химические свойства). Эти данные будут использованы в последующих расчетах. И от их точности зависит процесс оптимизации сметы строительства.
  • На следующем этапе выполняется сбор нагрузок – аккумулирование всех сил и моментов, нагружающих основание. Причем в качестве источников нагрузки рассматривают как статические (вес строения и прочее), так и динамические (снеговую нагрузку и так далее) усилия.
  • Далее наступает этап предварительного проектирования, в процессе которого формируется «черновая» конструкция фундамента.
  • Все параметры, вычисленные на этапе «чернового» проектирования нуждаются в проверке. Поэтому на следующем этапе предварительную конструкцию «прогоняют» сквозь специальные программы, моделирующие процесс взаимодействия основания с грунтом и строением. В итоге получается оптимизированная под конкретные условия конструкция.
  • В финале, на основе окончательных расчетов выполняются чертежи, и составляется прочая проектная документация.

Этапы проектирования свайно-винтовых оснований

С учетом вышеуказанных рекомендаций расчет основания на винтовых сваях предполагает следующие действия:

  • Па первом этапе определяется состав почвы. Для этого на участке бурят несколько скважин, заглубленных на 12 метров (максимальная длина одинарной сваи). Извлеченный из скважин грунт исследуется в лаборатории, где определяют его несущую способность, влажность, глубину промерзания и прочие характеристики. Кроме того, на особо сложных участках кроме исследования грунта выполняют еще и статические испытания натурных и контрольных свай, нагружаемых до отказа опоры.
  • На следующем этапе выполняют сбор нагрузок, вычисляя вертикальные и горизонтальные усилия, влияющие на опоры и ростверк.
  • Следующий этап —  расчет винтовых свай для фундамента – предполагает вычисления, проводимые на основе информации о нагрузках, несущей способности основания и прочностных характеристиках конструкционного материала опор. В результате этих вычислений определяют габариты опор, высоту цоколя, количество свай и форму свайного поля.
  • В финале, по полученным данным выполняют расчет стоимости фундамента на винтовых сваях, проводимый на основе усредненной стоимости строительных материалов и работ, проводимых в процессе сборки фундамента.

Но хватит теории. Давайте перейдем к практике и проведем черновой расчет свайного основания для дома из бруса с габаритами 6 на 4 метра, разделенного одной межкомнатной перегородкой.

Расчет количества винтовых свай с помощью калькулятора

Калькулятор свай

  1. Укажите длину сторон вашего строения.
  2. Укажите тип строения – беседка, баня, дом, гараж, бытовое сооружение и т.д.
  3. Укажите при необходимости кол-во этажей. Примечание:дом с мансардой будет считаться 1,5-этажным строением.
  4. Выберите строительный материал вашего сооружения.
  5. Укажите тип грунта на участке.
  6. Укажите количество углов планируемого дома.
  7. Укажите высоту цокольного этажа из предложенных вариантов.
  8. Отметьте, собираете ли вы устанавливать камин/печку.
  9. Нажмите на кнопку «Рассчитать».

Конечно, данный расчет является предварительным, он послужит ориентиром при планировании бюджета и дальнейшего заказа.

Винтовой фундамент служит отличным решением с точки зрения экономии времени и денег, а также по показателям качества итогового результата. Кроме того, монтаж такого типа основания прост и не вызывает затруднений у строителей. В некоторых случаях, застройщик может выполнить установку своими силами (частное домостроение).

Как найти нагрузку на основание

Нагрузка на фундамент определяется как суммарный вес постройки и всех дополнительных элементов:

  • Стены дома.
  • Перекрытия.
  • Стропильная система и кровля.
  • Наружная обшивка, утеплитель.
  • Эксплуатационная нагрузка (вес мебели, бытовой техники, прочего имущества).
  • Вес людей и животных.
  • Снеговая и ветровая нагрузка.

Производится последовательный подсчет всех слагаемых, после чего вычисляется общая сумма. Затем необходимо увеличить ее на величину коэффициента прочности.

Необходимо решить, возможны ли какие-либо дополнительные пристройки или дополнения, увеличивающие вес дома и изменяющие величину нагрузки на основание. Если подобные изменения входят в планы, лучше сразу заложить их в несущую способность фундамента, чтобы упростить себе задачу в будущем.

Пример расчета буронабивной основы

Прежде всего следует вычислить несущую способность одной сваи. Для примера возьмем наиболее распространенный вариант — диаметр скважины 30 см, несущая способность грунта составляет 4 кг/см2. По таблицам СНиП определяем, что несущая способность на песках средней плотности составит около 2,5 т.

Затем производится подсчет общего веса дома. Он делается по обычной методике, но к нему понадобится прибавить вес ростверка, для чего следует вычислить объем ленты и умножить его на удельный вес бетона.

После этого нагрузку на сваи делят на несущую способность единицы и округляют до большего целого значения. Это — количество буронабивных свай, необходимое для дома заданного веса, выстроенного в заданных условиях.

Даже состав грунта редко соответствует лабораторным показателям из-за различных примесей, включений или прочих напластований, изменяющих все параметры.

Поэтому в любом случае надо делать запас прочности, превышающий обычные коэффициенты, заложенные в формулы. Рекомендуется увеличивать его на 10-15%.

ОБРАТИТЕ ВНИМАНИЕ!

Необходимо помнить, что все расчеты производятся по формулам, не учитывающим реальной обстановки на участке.

Порядок расчета допустимых нагрузок на сваи

На запас прочности опорного столба влияет его длина и диаметр. Пример зависимости этих показателей можно увидеть в таблице 1.

Таблица 1. Несущая способность винтовых свай.

Большое значение для расчетов имеет тип грунта на участке застройки, глубина залегания плотного несущего слоя, уровень промерзания почвы. При проектировании фундамента нужно подбирать такое количество стержней, чтобы проектная нагрузка на основание была меньше табличной, то есть обязательно должен быть запас прочности.

Основные составляющие расчетов нагрузки на сваи:

  • диаметры ствола и лопастей;
  • длина свайной конструкции;
  • характеристики грунта.

Самый простой способ расчета выполняется при помощи формулы H = F / уk, где:

  • H — вес, который выдерживает свайная конструкция;
  • F — «чистая» нагрузка;
  • уk — поправочный коэффициент.

Коэффициент надежности зависит от количества столбов в свайном поле, нагрузки на почву. Для определения поправочного коэффициента используют следующие данные:

  • Коэффициент 1,2. Его используют в том случае, если были проведены точные геологические исследования с зондированием почвы, сбором образцов, лабораторными исследованиями грунта. Этот способ редко используют при строительстве частных домов из-за высокой стоимости геологической экспертизы.
  • Значение 1,25. Такой коэффициент используется если было проведено пробное бурение. Сваю-эталон вкручивают в нескольких точках на участке застройки. Таким способом определяют глубину залегания несущего пласта, его толщину. Для выполнения пробного бурения нужны практические навыки, а также определенные познания в области геологии.
  • Значение 1,75. Этот показатель применяется при самостоятельном исследовании грунта и использовании справочных данных. Он подходит для свайных фундаментов при количестве опорных столбов до 22 штук.

Для частного строительства лучше применять 2 способ, поскольку провести полноценную геологическую экспертизу своими силами невозможно.

Чтобы рассчитать неоптимизированную несущую нагрузку нужно выполнить вычисления по следующей формуле F = S x Rо, где Ro это прочность основания, а S — площадь лопасти. Ее вычисляют по специальной формуле или используют исходные данные, которые предоставляют изготовители винтовых свай.

Таблица 2. Размеры и вес свайных конструкций.

Диаметр столба, мм

Диаметр лопасти, мм

Толщина стали (ствол), мм

Толщина стали (лопасть), мм

При определении длины опорных конструкций нужно учитывать тип грунта и особенности климата данной местности. Поскольку сваи вкручивают ниже точки промерзания необходимо знать на какую глубину промерзает почва. Средние показатели для Москвы и Московской области:

  • глинистые почвы и суглинки — 135 см;
  • песчаные — от 164 до 176 см;
  • каменистые — 200 м.

Для определения прочности основания (Ro) применяют табличные данные.

Таблица 3. Тип почвы и ее несущая способность.

Rо на глубине 150 см и более, кг/см2

Галька с включениями глины

Гравелистый с включениями глины

Песчаные почвы (крупная фракция)

Песчаные почвы (средняя фракция)

Песчаный (мелкая фракция)

Глинистые почвы и супеси

Вязкие глинистые почвы

Просадочный грунт или насыпное основание (с уплотнением)

Насыпной грунт (без уплотнения)

Данные из таблиц подставляют в формулу и находят ориентировочную нагрузку на основание. Полученное число умножают на коэффициент надежности и определяют проектную нагрузку на один опорный столб.

Более точное значение можно получить, используя множество коэффициентов: от глубины залегания лопастей и силы бокового трения до характера работы опоры, величины выдергивающих или сжимающих сил. Чтобы упростить работу используют данные из таблиц.

Таблица 4. Несущая способность одной свайной опоры (Ф ствола 108 мм, Ф лопасти 300 мм).

Несущая способность сваи в кг при глубине залегания лопасти, см

песчаные (крупная и средняя фракция)

песчаные (мелкая фракция)

Запас прочности свайных опор диаметром 108 мм позволяет использовать их в качестве основания для строительства каркасных, бревенчатых, брусовых домов в один этаж. Для двухэтажных построек, а также сооружений из кирпича и блока используют сваи большего диаметра.

3.2. Заливка скважин. Армирование свай фундамента

Перед заливкой бетоном каждая из скважин армируется. Арматура раскладывается продольно по всей длине сваи. Для каждой из столбовых опор достаточно 4-6 прутьев диаметром 12-10 мм. Для придания устойчивости каждая из арматур предварительно сваривается между собой проволокой. Получается своеобразный каркас (закладная), который вставляется в подготовленную скважину. Арматура обязательно должна выступать над сваей – ее длина должна быть такова, чтобы сцепление с ростверком было достаточным. Расстояние от стен скважины (в случае установки опалубки – от стен опалубки) до прута – не менее 5 см.

Во избежание появления воздушных карманов бетонирование должно осуществляться послойно по 25-30 см. Каждый последующий слой плотно утрамбовывается лопатой-штыковкой или вибратором. Чтобы не допустить швов на стыках, заливка каждого последующего слоя производится до высыхания предыдущего.

Выбор оптимального диаметра конструкции

Способы применения свай для фундамента различного диаметра

Понятно, что каждый тип рассчитан на свою допустимую нагрузку, поэтому в некоторых случаях профессионалы считают диаметр самостоятельно и подгоняют под заводские нормы. Итак, сейчас на рынке строительных материалов можно заказать конструкции с диаметром 57, 76, 89 и 108 мм. Подбираются они по некоторым правилам:

  1. Диаметр 57 мм рассчитан на небольшую нагрузку, поэтому часто используется для возведения фундаментов для заборов, сараев, других хозяйственных построек небольшой массы.
  2. Диаметр 76 мм рассчитан на максимальную нагрузку до 3 тонн, поэтому используется для строительства легких хозяйственных построек.
  3. Диаметр 89 мм уже отличается большей несущей способностью, выдерживает нагрузку до 5 тонн на единицу, поэтому оптимален для возведения жилых одноэтажных каркасных зданий.

А вот диаметр 108 мм уже способен нести на себе каркасные жилые здания с несколькими этажами. Только возводить их нужно из относительно легких строительных материалов, ведь допустимая нагрузка на одну сваю составляет до 7 тонн.

Технико-экономическое обоснование возведения фундамента

Чтобы определить реальный объем денежных средств по устройству основания дома на винтовых сваях, все затраты сводят к единому итогу. Цены материалов и расценки на выполнение работ взяты усреднено по стране.

  1. Стоимость сваи 108х2500 – 2,8 т.р. Общая сумма — 30 шт х 2,8 = 84 т.р.
  2. Цена сваи 89х2500 – 2,2 т.р. Общая сумма – 6 х 2,2 = 13,2 т.р.
  3. Установка вручную всех ВС с подрезкой под горизонтальный уровень равна 36 х 1,8 = 64,8 т.р.
  4. Доставка свай на строительный участок – 1,5 т.р.
  5. Стоимость швеллера № 20 с установкой на сварке – 120 п.м. х 1,05 = 126 т.р.
  6. Доставка швеллера – 4 т.р.

Итого общая сумма затрат составит – 293,5 т.р.

Для сравнения устройство ленточного фундамента для такого дома обойдётся примерно в 900 т.р. То есть свайный фундамент на винтовых опорах принесёт экономию в 300 – 400 т.р.

Прочность трубы на сжатие

Почему в качестве опор для строительства выбираются металлоконструкции в виде трубы? Она имеет замкнутый контур, что придает опоре повышенную жесткость по сравнению с открытыми контурами швеллера или уголка. При равной массе металла конструкция трубы жестче, следовательно, расходы на трубные опоры оказываются ниже.

Существуют методики определения жесткости тех или иных труб, позволяющие выбрать их в качестве опор свайного фундамента.

В результате расчетов оптимальными для возведения фундаментов признаны трубы, выполненные из конструкционных марок стали, диаметром от 73 до 300 мм, с толщиной стенки от 4 мм для самых мелких труб. Чаще всего берутся рядовые трубы со сталью 20, как наиболее распространенные на рынке.

Большое значение имеет замкнутость и надежность контура трубы

Важно отметить, что для свай рекомендовано использовать только бесшовные трубы

Пример расчета несущей способности свайного отдельно стоящего фундамента

Рассчитать свайный фундамент под колонну про­мышленного здания на действие центральной нагрузки N

= 1,0 МН. Материал ростверка — бетон класса В25 с расчетным сопротивлени­ем осевому растяжениюRbt = 1,05 МПа. Глубина заложения подош­вы ростверка по конструктивным соображениям принята равнойh = 0,8 м. Грунтовые условия стро­ительной площадки: 1 — песок пылеватый (γ1= 0,0185 МН/м 3 ,h1 = 3,6 м,E1 = 15 МПа); 2 — супесь пластичная (γ2= 0,0195 МН/м 3 ,h2 = 1,7 м;Е2 =17 МПа); 3 — песок плотный (γ3=0,0101 МН/м 3 ,h3 = 2,2 м,E3 = 32 МПа);4 — суглинок тугопластичный (γ4 =0.01 МН/м 3 ,h4 =3,4 м,E4 =30 МПа).L/H—5,1.Решение.

Для заданных грунтовых условий проектируем свайный фундамент из сборных железобетонных свай марки С5,5-30, длинойL = 5,5 м, размером поперечного сечения 0,3×0,3 м и длиной острияl = 0,25 м. Сваи погружают с помощью забивки дизель-мо­лотом.

Найдем несущую способность одиночной висячей сваи, ориенти­руясь на расчетную схему, показанную на рис. 6.1, а

и имея в ви­ду, что глубина заделки сваи в ростверк должна быть не менее 5 см.

Рис. VI.1

Площадь поперечного сечения сваи A

= 0,3·0,3 = 0,09 м 2 , периметр сваи

По табл. 1.18(Приложение I) при глубине погружения сваи 6,5 м для песка мелкого, интерполируя, найдем расчетное сопротивление грунта под нижним концом сваи R =

2,35МПа.

По табл. 1.18(Приложение I) для свай, погружаемых с помощью дизель-моло­тов, находим значение коэффициента условий работы грунта под нижним концом сваи γcR

=1,0 и по боковой поверхностиγcf =1,0.

Пласт первого слоя грунта, пронизываемого сваей, делим на два слоя толщиной 2 и 0,8 м. Затем для песка пылеватого при сред­них глубинах расположения слоев h1

= l,8 м иh2 = 3,2 м, интерполи­руя, находим расчетные сопротивления по боковой поверхности сваи, используя данные табл. 1.19(Приложение I):f1 = 0,0198 МПа,f2 = 0,0254 МПа.

Для третьего слоя грунта при средней глубине его залегания h3

= 4,45 м по этой же таблице для супеси пластичной с показате­лем текучестиIL = 0,6, интерполируя, находимf3 = 0,0165 МПа.

Для четвертого слоя при средней глубине его расположения h4

= 5,775 м для песка мелкого находимf4 = 0,041б МПа.

Несущую способность одиночной висячей сваи определим по формуле (6.4)

Ф=

1 =0,364 МН.

Расчетная нагрузка, допускаемая на сваю по грунту, составит:

F

= 0,364/1,4 = 0,26 МН.

В соответствии с конструктивными требованиями зададимся шагом свай, приняв его равным а = 3b

= 3·0,3 = 0,9 м. Далее определим требуемое число свай:

Окончательно примем число свай в фундаменте равным 4 и разместим их по углам ростверка.

Найдем толщину ростверка из условия (8.8):

По конструктивным требованиям высота ростверка должна быть не менее hp

= 0,05+ 0,25 = 0,3 м, что больше полученной в результа­те расчета на продавливание. Следовательно, окончательно примем высоту ростверка равной 0,3 м.

Расстояние от края ростверка до внешней стороны сваи в соот­ветствии с конструктивными требованиями назначим равным

= = 0,3·30+5=14 см, примем его окончательно, кратным 5 см, т. е.lp = 15 см. Расстояние между сваями примем равным:l =3b = 0,9 м.

Конструкция ростверка и его основные размеры показаны на рис. VI.1, б.

Найдем вес ростверка G3

= 0,025·0,3·1,5·1,5 = 0,0169 МН и вес грунта, расположенного на ростверке,Gгр = 0,5·1,5·1,5 ·0,0185 = 0,0208 МН.

Определим нагрузку, приходящуюся на одну сваю, по формуле:

Найдем вес свай:

G1

= 4 (5,5·220·10 + 50·10) = 50800 H = 0,0508 МН.

Вес грунта в объеме АБВГ

(см. рис. 6.1):

Вес ростверка был найден ранее: G3

=0,0169 МН.

Давление под подошвой условного фундамента:

По табл. 1.12(Приложение I) для песка мелкого, на который опирается условный фундамент, с коэффициентом пористости е

= 0,598 найдем значение удельного сцеплениясп = 0,003 МПа.

По табл. 1.13(Приложение I) по углу внутреннего трения φn

= 34°, который был определен ранее, найдем значение безразмерных коэффициентов: =l,55,Mq =7,22 иМс =9,22.

Определим осредненный удельный вес грун­тов, залегающих выше подошвы условного фундамента:

По табл. 1.15. (ПриложениеI) для песка мелкого, насыщенного водой, при соот­ношении L/H>4

находим значения коэффициентовγс1 = 1,3 иγс2 = 1,1.

По формуле (8.3) определим расчетное сопротивление грунта основания под подошвой условного фундамента:

Основное условие при расчете свайного фундамента по второй группе предельных состояний удовлетворяется: Рср

= 0,276 МПа

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения:Учись учиться, не учась! 10546 – | 7960 – или читать все.

93.79.246.243 studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Расчет несущей способности сваи

Расчет несущей способности сваи осуществляется согласно СНиП 2.02.03-85 «СВАЙНЫЕ ФУНДАМЕНТЫ».

Несущую способность Fd кН (тc), винтовой сваи диаметром лопасти d ≤ 1,2 м и длиной l < 10 м, работающей на сжимающую или выдергивающую нагрузку, следует определять по формуле 1, а при диаметре лопасти d > 1,2 м и длине сваи l > 10 м— только по данным испытаний винтовой сваи статической нагрузкой:

Fd = γc [(α1c1 + α2γ1h1)A + ufi(h — d)],

(1)

где γc,— коэффициент условий работы, зависящий от вида нагрузки, действующей на сваю, и грунтовых условий, и определяемый по табл. 1; α1, α2 — безразмерные коэффициенты, принимаемые по табл. 9 в зависимости от расчетного значения угла внутреннего трения грунта в рабочей зоне φ1, (под рабочей зоной понимается прилегающий к лопасти слой грунта толщиной, равной d); c1 — расчетное значение удельного сцепления пылевато-глинистого или параметр линейности песчаного грунта в рабочей зоне, кПа (тс/м2); γ1 — осредненное расчетное значение удельного веса грунтов, залегающих выше лопасти сваи (при водонасыщенных грунтах с учетом взвешивающего действия воды); h1 — глубина залегания лопасти сваи от природного рельефа, а при планировке территории срезкой — от уровня планировки, м; A — проекция площади лопасти, м2, считая по наружному диаметру, при работе винтовой сваи на сжимающую нагрузку, и проекция рабочей площади лопасти, т.е. за вычетом площади сечения ствола, при работе винтовой сваи на выдергивающую нагрузку; fi — расчетное сопротивление грунта на боковой поверхности ствола винтовой сваи, кПа (тс/м2), принимаемое по табл. 2 (усредненное значение для всех слоев в пределах глубины погружения сваи); u — периметр ствола сваи, м; h — длина ствола сваи, погруженной в грунт, м; d — диаметр лопасти сваи, м.

Примечания: 1. При определении несущей способности винтовых свай при действии вдавливающих нагрузок характеристики грунтов в табл. 9 относятся к грунтам, залегающим под лопастью, а при работе на выдергивающие нагрузки — над лопастью сваи. 2. Глубина заложения лопасти от уровня планировки должна быть не менее 5d при пылевато-глинистых грунтах и не менее 6d — при песчаных грунтах (где d — диаметр лопасти). 3. Расчетные значения угла внутреннего трения φ1 и сцепления грунта c1 основания при расчетах по формуле (1) должны определяться в соответствии с требованиями п. 3.5. СНиП 2.02.03-85 «СВАЙНЫЕ ФУНДАМЕНТЫ». Таблица 1

Грунты Коэффициент условий работы винтовых свай при нагрузках
сжимающихвыдергивающихзнакопеременных
1. Глины и суглинки:
а) твердые, полутвердые и тугопластичные 0,8 0,7 0,7
б) мягкопластичные 0,8 0,7 0,6
в) текучепластичные 0,7 0,6 0,4
2. Пески и супеси:
а) пески маловлажные и супеси твердые 0,8 0,7 0,5
б) пески влажные и супеси пластичные 0,7 0,6 0,4
в) пески водонасыщенные и супеси текучие 0,6 0,5 0,3

Таблица 2

Расчетное значение угла внутреннего

трения грунта в рабочей зоне jI, град.

Коэффициенты Расчетное значение угла внутреннего

трения грунта в рабочей зоне jI , град.

Коэффициенты
a1, a2a1,a2
13 7,8 2,8 24 18,0 9,2
15 8,4 3,3 26 23,1 12,3
16 9,4 3,8 28 29,5 16,5
18 10,1 4,5 30 38,0 22,5
20 12,1 5,5 32 48,4 31,0
22 15,0 7,0 34 64,9 44,4

Особенности расчета количества свай

Схема свайного фундамента из сборных винтовых свай.

Учитывая тот факт, что винтовые сваи располагаются на расстоянии 2-3 м друг от друга, существует вероятность того, что дом может со временем неравномерно осесть. Для того чтобы избежать подобных проблем, при нужно учитывать возможные дополнительные нагрузки на фундамент со стороны здания.

Если в местности строительства преобладают сильные ветры одного направления, то к нагрузке нужно прибавлять минимум 20%. Как показывает практика, в большинстве случаев прибавляется не 20%, а 30-35%, чтобы перекрыть все возможные неточности при . Многие нагрузки не проявляют себя после окончания строительства, потому лучше перестраховаться.

При расчете нагрузок от здания на свайно-винтовой фундамент необходимо учитывать и внутренние несущие стены. Оптимальным вариантом будет более частое размещение опор на таких участках. Если же стена не несущая, то сваи можно расположить на большем расстоянии друг от друга.

При наличии на участке строительства слабых подстилающих грунтов лучше всего использовать деревянные перекрытия, которые имеют меньший вес. Стены и крыша дома в таких условиях тоже должны быть максимально легкими.

Пример расчета свайного фундамента

Для расчета количества свай нужно учесть их диаметр, несущую способность и длину.

В качестве примера расчета, сколько же нужно свай для возведения качественного основания, приведем расчет их количества для деревянного дома из бруса, возводимого в Новосибирской области.

По проектной документации стены возводимого здания должны быть сложены из бруса сечением 150х150 мм. Периметр дома составляет 20 м (сруб 4х6 м), высота стен – 3,5 м. Предполагается наличие 4-х стен, двух внутренних перегородок по 4 м из того же бруса, пола и потолка с крышей, а также мебели и печи. Удельный вес деревянного бруса составляет 600 кг/м3. Для возведения стен нужно 0,15х3,5х(6+4+4+4)=9,45 м3 древесины. Учитывая внутреннюю нагрузку, равную 100 кг на 1 м2 дома, получаем общий вес, равный 9,45х600+24х100=8070 кг.

Снеговое давление на проектируемый дом составляет 24х180=4320 кг, где 180 кг/м2 – это норма нагрузки для Новосибирска и Новосибирской области.

Ветровая нагрузка подсчитывается перемножением площади дома на сумму (40+15h), где h – это высота стен. В нашем случае влияние ветра равно 24х(40+15х3,5)=2220 кг.

Общее давление здания на грунт составляет 8070+4320+2220+8400=23010 кг.

Оптимальным количеством опор для дома 4х6 м из бруса сечением 150х150 мм является 12 свай, четыре из которых ставятся по углам здания, по две – под длинные стены здания, по одной – под короткие стены и две сваи – для поддержки внутренних перегородок. Соответственно, зная и нагрузку на фундамент, получаем минимальную несущую способность каждой сваи, равную 23010/12=1917,5 кг.

Методика расчета

Расчет количества винтовых свай выполняют с учетом габаритов и веса дома, который будет установлен на фундамент. Как правило, расстояние между сваями может составлять:

  • до 2 м, если будет возводиться строение из газобетонных и пенобетонных блоков или плит;
  • до 3 м, если запланировано строительство деревянного дома из бруса, бревна и т.д.;
  • до 2,5 м – также выбирают для деревянных конструкций. Еще с такими сваями работают в регионах, где наблюдается большая ветровая нагрузка;
  • до 3,5 м – под строительство легковесных заборов и оград.

Чтобы правильно определить количество опор для свайно-винтового фундамента, следует провести следующие операции:

  • составить проект будущей основы или первого уровня постройки;
  • расположить винтовые опоры на каждом углу будущего здания;
  • установить сваи там, где будут пересекаться несущие перегородки дома;
  • между расположенными сваями теперь необходимо установить дополнительные сваи по периметру несущих стен с тем условием, чтобы расстояние от одного до другого элемента не превышало того, что было зафиксировано ранее (учитывая вес и вид постройки);
  • оставшееся пространство для фундамента заполняется сваями так, чтобы между соседними опорами расстояние не превышало указанного в расчетах (2 – 3 м);
  • там, где будет установлена печь или каминный очаг, предусмотрите не менее пары винтовых опор, опять-таки, учитывая размер отопительной конструкции, иначе не избежать критической нагрузки на фундамент;
  • на тот случай, если будет обустроена терраса или любая другая пристройка, места фиксации опорных элементов обозначаются по ранее оговоренному принципу, учитывая оптимальное расстояние шага;
  • теперь, когда расстояние между сваями определено, остается подсчитать все винтовые опоры, нанесенные на план-схему.

Виды фундаментных конструкций с ростверком

В том случае если застройщику удастся правильно рассчитать не только количество свай, необходимых для ростверкового фундамента, но и глубину их погружения, то в процессе эксплуатации несущая конструкция не будет подвергаться промерзанию и пагубному воздействию влаги. Если планируется строительство на участке с небольшим рельефным перепадом, который выравнивать нецелесообразно, тогда можно соорудить комбинированную фундаментную конструкцию, например, свайно-ленточную.


Существуют следующие виды фундаментов с ростверком:

  1. Ленточный. В процессе проведения строительных работ застройщик связывает между собой расположенные по соседству сваи.
  2. Выполненный в виде плиты. В этом случае застройщику приходится связывать каждый оголовок.
Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий