Калькулятор расчета вольтамперной характеристики стабилизатора напряжения

Стабилизатор напряжения на транзисторе (параметрический стабилизатор).

Когда речь заходит о регулируемых стабилизаторах напряжения, то как правило, первым делом вспоминают о таких популярных решениях как LM317 или LM78xx.

Сегодня же речь пойдет о так называемом параметрическом стабилизаторе, устройстве состоящем из дух частей: непосредственно стабилизатора (стабилитрон и балластный резистор) и эмиттерного повторителя — транзистора выполняющего роль силового элемента. Принципиальная схема такого стабилизатора приведена на рисунке №1.


Рисунок №1. Принципиальная схема стабилизатора.

За сохранение на выходе стабильного напряжения отвечает стабилитрон D1, однако он способен выдать небольшой выходной ток, как правило не превышающий пары десятков миллиампер, поэтому в схеме и необходим транзистор являющейся «умощнителем» выходного напряжения, то есть вся нагрузка проходит через него.

Для примера рассчитаем стабилизатор с выходным напряжением 12 вольт и током 1 ампер. Первым делом следует учесть, что входное напряжение должно быть на 2-3 вольта выше чем выходное, это необходимо для нормальной работы стабилитрона и компенсации потерь на переходе коллектор-эмиттер транзистора. В нашем примере входное напряжение будет равно 15-ти вольтам.

При выборе транзистора следует учесть, что его предельное напряжение между эмиттером и коллектором должно быть больше входного, а максимальный ток коллектора должен быть больше выходного тока стабилизатора. В качестве силового элемента я буду использовать распространенный транзистор средней мощности КТ817А.

Еще один параметр транзистора который нам понадобиться это минимальный коэффициент передачи тока транзистора (обозначается как h21э), в моем случае это 25. Этот параметр необходим для расчета тока базы транзистора который должен обеспечить стабилитрон, рассчитывается по формуле:

I базы = I max вых. / коэффициент h21э

I базы = 1 / 25 = 0,04 А

Теперь перейдем к выбору стабилитрона, напряжение стабилизации которого должно быть равно выходному напряжению всей схемы, а ток не менее 40 миллиампер ( рассчитанный нами ток базы транзистора). Я буду использовать 1N5349 с током стабилизации 100 миллиампер.

Осталось посчитать необходимое сопротивление резистора R1 по следующей формуле:

R = (U вх. — И стаб.) / (I базы тр. + I стабилитрона)

R = (15 — 12) / (0.040 + 0.100) =22 ом.

и необходимую мощность резистора по формуле:

P = (U вх. — И стаб.) * (I базы тр. + I стабилитрона)

P = (15 — 12) * (0.040 + 0.100) =0.42 ватт.

Исходя из расчетов следует взять резистор мощностью 0.5 ватт или более мощный.

Что делать если ток стабилизации превышает ток базы транзистора? В этом случае в схему необходимо добавить еще один маломощный транзистор, назовем его «управляющим транзистором». Такой транзистор позволит существенно снизить нагрузку на стабилитрон (рис. 2).


Рисунок №2. Схема с дополнительный транзистором.

Еще необходимо сказать о возможности регулирования выходного напряжения такого стабилизатора от 0 до напряжения стабилизации стабилитрона, для этого необходимо добавить в схему переменный резистор (рис. 3).


Рисунок №3. Регулируемый стабилизатор.

Следует помнить, что чем меньше выходное напряжение относительно входного, тем больше мощность которая будет рассеиваться на транзисторе. При больших токах транзистор необходимо установить на радиатор. Посчитать мощность можно по формуле:

P = (U вход. — U вых.) * I вых.

Таким образом в случае входного напряжения 15 вольт, а выходного 12 вольт при токе нагрузки 0.1 ампер, мощность рассеиваемая на транзисторе составит 0.3 ватта. Однако при тех же параметрах и током нагрузки в 1 ампера мощность составит уже 3 ватта и в таком случае не обойтись без радиатора.

И в конце стоит сказать о том, что на практике выходное напряжение всей схемы будет немного ниже напряжения стабилизации стабилитрона. Это связано с тем, что часть напряжения потеряется на транзисторе при переходе база-эмиттер, поэтому следует выбирать стабилитрон с небольшим запасом по напряжению стабилизации.

↑ Второй вариант расчета параметрического стабилизатора [3 — 5]

Итак, исходными данными являются: стабилизированное напряжение на нагрузке Uвых, токи нагрузки Iн min, Iн max, номинальное входное напряжение Uвх и его отклонения ΔUвх н и ΔUвх в.

Параметры стабилитрона те же, что и в предыдущем расчете: Uст= Uвых, Iст max, Iст min, rд.

Вычисляем максимальное и минимальное значения рабочего тока стабилитрона:

Iст р max=0,8 Iст max,Iст р min=1,2 Iст min.

Если стабилизатор должен работать режиме холостого хода (Iн min=0), выбираем Iст р min=Iст min.

Проверяем пригодность выбранного по напряжению стабилизации стабилитрона заданных пределах тока нагрузки и питающего напряжения:

(Iст р max+ Iн min)(1- ΔUвх н)-(Iст min+ Iн max)(1+ ΔUвх в)>0,где ΔUвх н=(Uвх- Uвх min)/ Uвх, ΔUвх в=(Uвх max-Uвх)/ Uвх.

Номинальное напряжение Uвх, которое должен обеспечить выпрямитель, вычисляем по формуле:

Uвх= Uст/.

Сопротивление балластного резистора:

R= Uвх(ΔUвх в+ΔUвх н)/.

Также вычисляем мощность резистора с двукратным запасом:

Po=2(Uвх(1+ ΔUвх н)- Uст) 2 /R.

По приведенным в первом варианте расчета формулам находим Kст, КПД и Kф.

↑ Пример расчета №3

Рассчитаем параметрический стабилизатор напряжения со следующими характеристиками: стабилизированное напряжение на нагрузке Uн=9 В; ток Iн min =0, Iн max =10 мА; изменение входного ΔUвх н=10%, ΔUвх в=15%.

Выберем стабилитрон типа Д814Б, для которого Uст= Uн; rд=10 Ом; Iст max=36 мА, Iст min=3 мА.

После занесения исходных данных листе таблицы «Второй вариант расчета» получаем следующие результаты (рис. 4):

Uвх=14 В, R=221 Ом, Po=0,45 Вт, Kст=14,2.

Выбираем резистор сопротивлением 220 Ом мощностью 0,5 Вт.

Стабилизатор приобретается для одновременной защиты трех однофазных потребителей

Не будем акцентировать внимание на конкретном виде устройств, назовем их просто: потребитель 1, потребитель 2 и потребитель 3

Согласно заводским паспортам:

  • номинальная мощность потребителя 1 составляет 600 Вт, потребителя 2 – 130 Вт, потребителя 3 – 700 Вт;
  • коэффициент мощности потребителей 1 и 2 равен 0,7, потребителя 3 – 0,95.

Определяем мощность нагрузки. Пусть потребитель 1 относится к категории оборудования, характеризующегося наличием высоких пусковых токов. При расчёте используем не его номинальную мощность, а максимальную – пусковую, равную согласно технической документации 1800 Вт. Используя вышеуказанную формулу, переведём мощность каждого потребителя из Вт в ВА:

  • 1800 / 0,7 = 2571,4 ВА – для потребителя 1;
  • 130 / 0,7 = 185,7 ВА – для потребителя 2;
  • 700 / 0,95 = 736,8 ВА – для потребителя 3.

Теперь определим суммарную потребляемую мощность планируемой нагрузки в Вт и ВА:

  • 1800 + 130 + 700 = 2630 Вт;
  • 2571,4 + 185,7 + 736,8 = 3493,9 ВА.

Дальнейший выбор стабилизатора будем проводить, учитывая, что полная мощность нагрузки на устройство составит 3493,9 ВА, а активная – 2630 Вт (обратите внимание на разницу значений в Вт и ВА). Далее определяем запас мощности

Примем рекомендованную величину запаса мощности в 30% от энергопотребления нагрузки – для получения численного значения необходимого запаса умножим на 0,3 ранее рассчитанные суммарные мощности планируемой нагрузки:

Далее определяем запас мощности. Примем рекомендованную величину запаса мощности в 30% от энергопотребления нагрузки – для получения численного значения необходимого запаса умножим на 0,3 ранее рассчитанные суммарные мощности планируемой нагрузки:

  • 2630 х 0,3 = 789 Вт – запас активной мощности;
  • 34,939 х 0,3 = 1048,17 ВА – запас полной мощности.

Следовательно мощность нагрузки с учётом запаса составит:

  • 2630 + 789 = 3419 Вт;
  • 3493,9 + 1048,17 = 4542,07 ВА.

Теперь выберем модели однофазного стабилизатора с необходимой мощностью для электропитания нашей нагрузки (с учетом запаса), используя стандартный мощностной ряд однофазных инверторных стабилизаторов производства ГК «Штиль»:

Полная мощность, ВААктивная мощность, Вт
350300
550400
1000750
15001125
25002000
35002500
60005400
80007200
100008000
1500013500
2000016000

Ближайшая с большей стороны к расчётным значениям мощность – 6000 ВА и 5400 Вт, следовательно, именно такой стабилизатор подходит для подключения потребителя 1, потребителя 2 и потребителя 3.

Если взять модель с мощностью, ближайшей к расчетному значению в меньшую сторону (3500 ВА/ 2500 В), то стабилизатор окажется перегружен, так как выходная активная мощность устройства окажется меньше потребляемой активной мощности нагрузки: 2500 Вт

Особенности разных типов оборудования

В решении вопроса выбора подходящего оборудования ответить однозначно не представляется возможным. Всё зависит от конкретных потребностей и (в ни меньшей степени) цены на стабилизатор.

Всего на рынке представлено три основных типа стабилизаторов напряжения для дома.

  1. Релейный (сюда же можно отнести и электронный). Самый демократичный по стоимости тип. У него широкий диапазон рабочего напряжения и высокая скорость стабилизации. Основной недостаток – погрешность до 6-8% у выходного напряжения.Достоинства

    для входного напряжения имеется широкий диапазон стабилизации;

    стабилизатора напряжения релейного типа:

  2. низкая цена и долговечность (до 10 лет эксплуатации).

На заметку. Для этого типа стабилизаторов важный показатель – количество ступеней. Чем их больше, тем стабильнее работа прибора.При неоднократном падении или повышении напряжения в сети ступени (реле, включающие стабилизацию) будут его компенсировать поочерёдно.

Электромеханический тип отличает плавность регулировки и высокая точность напряжения на выходе. Рассчитанные на одну фазу стабилизаторы имеют два или три трансформатора и являются достаточно мощными приборами. Приобрести их можно по вполне доступным ценам.Достоинства

широкий входной диапазон;

:
переносит кратковременную перегрузку до 200%;
бесшумная работа.

Недостатки:

  • не работает при морозах ниже -5 градусов;
  • невысокая скорость стабилизации.

К электромеханическому типу относятся так же:

электродинамические стабилизаторы – более дорогие, выдерживающие перегрузку в 200% две минуты подряд и работающие при температуре до -15 градусов;
комбинированные (гибриды) – с двумя добавочными релейными стабилизаторами, которые срабатывают при аномальном повышении или понижении напряжения в сети.

Электромагнитный тип отличает высокая скорость стабилизации и возможность работы при температурах от -40 до +50 градусов.

Недостатки:

  • узкий входной диапазон напряжения;
  • наличие искажений в сети на выходе;
  • шумность в работе;
  • чувствителен к изменению частоты;
  • не работает при меньшей от номинала нагрузке (критичны 10-20%).

Пример подбора стабилизатора по мощности

Стабилизатор приобретается для одновременной защиты трех однофазных потребителей

Не будем акцентировать внимание на конкретном виде устройств, назовем их просто: потребитель 1, потребитель 2 и потребитель 3

Согласно заводским паспортам:

  • номинальная мощность потребителя 1 составляет 600 Вт, потребителя 2 – 130 Вт, потребителя 3 – 700 Вт;
  • коэффициент мощности потребителей 1 и 2 равен 0,7, потребителя 3 – 0,95.

Определяем мощность нагрузки. Пусть потребитель 1 относится к категории оборудования, характеризующегося наличием высоких пусковых токов. При расчёте используем не его номинальную мощность, а максимальную – пусковую, равную согласно технической документации 1800 Вт. Используя вышеуказанную формулу, переведём мощность каждого потребителя из Вт в ВА:

  • 1800 / 0,7 = 2571,4 ВА – для потребителя 1;
  • 130 / 0,7 = 185,7 ВА – для потребителя 2;
  • 700 / 0,95 = 736,8 ВА – для потребителя 3.

Теперь определим суммарную потребляемую мощность планируемой нагрузки в Вт и ВА:

  • 1800 + 130 + 700 = 2630 Вт;
  • 2571,4 + 185,7 + 736,8 = 3493,9 ВА.

Дальнейший выбор стабилизатора будем проводить, учитывая, что полная мощность нагрузки на устройство составит 3493,9 ВА, а активная – 2630 Вт (обратите внимание на разницу значений в Вт и ВА). Далее определяем запас мощности

Примем рекомендованную величину запаса мощности в 30% от энергопотребления нагрузки – для получения численного значения необходимого запаса умножим на 0,3 ранее рассчитанные суммарные мощности планируемой нагрузки:

Далее определяем запас мощности. Примем рекомендованную величину запаса мощности в 30% от энергопотребления нагрузки – для получения численного значения необходимого запаса умножим на 0,3 ранее рассчитанные суммарные мощности планируемой нагрузки:

  • 2630 х 0,3 = 789 Вт – запас активной мощности;
  • 34,939 х 0,3 = 1048,17 ВА – запас полной мощности.

Следовательно мощность нагрузки с учётом запаса составит:

  • 2630 + 789 = 3419 Вт;
  • 3493,9 + 1048,17 = 4542,07 ВА.

Теперь выберем модели однофазного стабилизатора с необходимой мощностью для электропитания нашей нагрузки (с учетом запаса), используя стандартный мощностной ряд однофазных инверторных стабилизаторов производства ГК «Штиль»:

Полная мощность, ВААктивная мощность, Вт
350300
550400
800600
1000800
15001125
20001500
25002000
30002500
35002750
50004500
70005500
80007200
100009000
1200011000
1500013500
2000018000

Ближайшая с большей стороны к расчётным значениям мощность – 5000 ВА и 4500 Вт, следовательно, именно такой стабилизатор подходит для подключения потребителя 1, потребителя 2 и потребителя 3.

Предположим, что потребителя 1, потребителя 2 и потребителя 3 необходимо подключить не к однофазному, а к трехфазному стабилизатору. Стандартный мощностной ряд ГК «Штиль» для подобных устройств следующий:

Полная мощность, ВААктивная мощность, Вт
60005400
100008000
1500013500
2000016000

Нагрузку со значением полной мощности в 4542,07 ВА и активной – в 3419 Вт, возможно подключить к одной фазе трехфазного стабилизатора с выходной мощностью 15000 ВА / 13500 Вт, в котором отдельная фаза выдаст максимально – 5000 ВА / 4500 Вт.

Выбрать менее мощную модель стабилизатора позволит распределение нагрузки, то есть подключение каждого потребителя к отдельной фазе. Наибольшая нагрузка будет на фазе, питающей потребитель 1, энергопотребление которого – 1800 Вт / 2571,4 ВА.

Рассчитаем необходимый потребителю 1 запас мощности (примем рекомендованное значение запаса в 30%):

  • 1800 х 0,3 = 540 Вт – запас активной мощности;
  • 2571,4 х 0,3 = 771,4 ВА – запас полной мощности;
  • 1800 + 540 = 2340 Вт – активная мощность потребителя 1 с учётом запаса;
  • 2571,4 + 771,4 = 3342,8 ВА – полная мощность потребителя 1 с учётом запаса.

Значит, максимально возможная нагрузка на одну фазу стабилизатора при условии подключения трех потребителей к различным фазам может составить: 3342,8 ВА / 2340 Вт.

Выберем модель стабилизатора с выходной мощностью 10000 ВА / 8000 Вт, в которой допустимая нагрузка на одну фазу приблизительно равна 3333 ВА / 2666 Вт. В данном случае допустимо выбрать стабилизатор с полной мощностью чуть меньшей, чем расчётная – фактически это снизит запас по мощности для потребителя 1 на 1-2%.

Обратите внимание!

Существуют стабилизаторы топологии «3 в 1», то есть с трехфазным входом и однофазным выходом. Подобная схема позволяет равномерно нагрузить трехфазную сеть при подключении однофазной нагрузки.

О неполадках и сбоях в электросетях

Электрооборудование, изготавливаемое в России, естественно рассчитано на российскую электрическую сеть и обязано работать при напряжении от 198 до 242В и частоте от 49.5 до 51 Гц. Как правило диапазон напряжений и частот, в котором может работать оборудование, еще несколько шире (характерны например 187-242В). Для большинства работающих от сети устройств допустимы изменения частоты на 2Гц (или даже более) по сравнению с номинальным значением. По данным компании Bell Labs в США наблюдаются следующие наиболее часто встречающиеся сбои питания.

1. Провалы напряжения – кратковременные понижения напряжения, связанные с резким увеличением нагрузки в сети в связи с включением мощных потребителей, таких, как промышленное оборудование, лифты и т.д. Они являются наиболее частой неполадкой в электрической сети, встречаются в 87% случаев. 2. Высоковольтные импульсы – кратковременное (на наносекунды или единицы микросекунд) очень сильное увеличение напряжения, связанное с близким грозовым разрядом или включением напряжения на подстанции после аварии. Составляют 7.4 % всех сбоев питания. 3. Полное отключение напряжения согласно этому исследованию является следствием аварий, грозовых разрядов, сильных перегрузок электростанции. Встречается в 4.7% случаев. 4. Слишком высокое напряжение – кратковременное увеличение напряжения в сети, связанное с отключением мощных потребителей. Встречается в 0.7% случаев.

Как правильно определить необходимую мощность стабилизатора напряжения?

Чтобы сделать выбор модели стабилизатора напряжения по критерию необходимой мощности, неободимо рассчитать суммарную мощность, потребляемую нагрузкой. Мощность, потребляемую конкретным устройством, можно узнать из паспорта или инструкции по эксплуатации. Иногда потребляемая мощность вместе с напряжением питания и частотой сети указывается на задней стенке прибора или устройства.

При подсчете мощности, потребляемой устройством, следует учитывать так называемую полную мощность, а также пусковой ток устройства. Полная мощность — это вся мощность, потребляемая электроприбором, она состоит из активной мощности и реактивной мощности, в зависимости от типа нагрузки. Активная мощность всегда указывается в ваттах (Вт), полная — в вольт-амперах (ВА). Устройства — потре6ители электроэнергии зачастую имеют как активную, так и реактивную составляющие нагрузки.

Активная нагрузка. У этого вида нагрузки вся потребляемая энергия преобразуется в излучение (свет, тепло). У некоторых устройств данная составляющая является основной. Примеры — лампы накаливания, обогреватели, электроплиты, утюги и т. п.

Реактивные нагрузки. Все остальные. Они, в свою очередь, подразделяются на индуктивные и емкостные. Пример — устройства, содержащие электродвигатель. Эти элементы линейных цепей не поглощают энергии, а лишь частично запасают ее в электрическом или магнитном поле с последующей отдачей в электрическую цепь.

Полная мощность в вольт-амперах и активная мощность в ваттах связаны между собой коэффициентом COSф. На приборах, имеющих реактивную составляющую нагрузки, часто указывают их активную потребляемую мощность в ваттах и COSф. Чтобы подсчитать полную мощность в ВА, нужно активную мощность в Вт разделить на COSф. Например: если на дрели написано «600 Вт» и «COSф= 0,6», это означает, что на самом деле потребляемая инструментом полная мощность будет равна 600/0,6=1000 ВА. Если COSф не указан, для приблизительного расчета активную мощность можно разделить на 0,7.

Высокие пусковые токи. Любой электродвигатель в момент включения потребляет энергии в несколько раз больше, чем в штатном режиме. Соотношение величины потребляемого тока в момент пуска (включения) устройства к величине тока в установившемся режиме называется кратностью пускового тока. Данная величина зависит от типа и конструкции электродвигателя, наличия или отсутствия устройства плавного запуска, и может иметь значение от 3 до 7.

В случае, когда в состав нагрузки входит электродвигатель, который является основным потребителем в данном устройстве (например, погружной насос, холодильник), но его пусковой ток неизвестен, то паспортную потребляемую мощность двигателя необходимо умножить минимум на 3, во избежание перегрузки стабилизатора напряжения в момент включения устройства.

Рекомендуется выбирать модель стабилизатора напряжения с 20% запасом от потребляемой мощности нагрузки. Во-первых, Вы обеспечите «щадящий» режим работы стабилизатора, тем самым увеличив его срок службы, во-вторых, создадите себе резерв мощности для подключения нового оборудования.

Как выбрать подходящий стабилизатор напряжения для частного дома?

Мы ответили на вопрос о том, как выбрать стабилизатор напряжения 220В для дома по его конструктивному исполнению.

Следующий этап — оценка технических характеристик, указанных в инструкции по применению:

  • Количество фаз тока (1 или 3).
  • Мощность Ватт-Амперы (ВА).
  • Время реакции на изменение входного напряжения (миллисекунды, мс).
  • Порог отключения – верхний и нижний, Вольт.
  • Выходное напряжение с точностью регулирования (Например, 220В +/- 5%).
  • Способ установки (напольный или настенный).

Наибольшие затруднения у новичков вызывает вопрос правильного подбора мощности защитного устройства. Поэтому на нем мы остановимся более детально.

Кроме активной мощности, которую потребляет каждый бытовой прибор, в некоторых устройствах присутствует реактивная. Она возникает при наличии индуктивности (когда у потребителя энергии имеется достаточно мощный электродвигатель). В момент его пуска ток в сети возрастает в несколько раз. Поэтому, если вы выберете стабилизатор только по его паспортной (активной) мощности, и не учтете реактивную, то он не справится с пиковой нагрузкой.

Второй фактор, существенно влияющий на выбор — коэффициент трансформации. Он равен нулю, когда стабилизатор работает в идеальных условиях: получает на вход 220В и без изменений передает их бытовой технике. Если же ему приходится «поднимать или опускать» напряжение на 20-30%, то его мощность соответственно уменьшается. Данная зависимость отражена в таблице.

Соотношение между входным напряжением и коэффициентом трансформации

Что это означает в практическом плане? Допустим, что в вашей домашней электросети напряжение стабильно низкое и составляет 170 Вольт. Смотрим на таблицу и видим, что ему соответствует коэффициент трансформации 1,35. Значит, при выборе стабилизатора для одного прибора или для целой группы устройств его мощность должна быть выше паспортной минимум на 35%.

В качестве примера рассмотрим выбор стабилизатора для газового котла в доме с повышенным напряжением (250 В). В котле установлен циркуляционный насос с электродвигателем.

Поскольку его мощность невелика (порядка 80-150 Ватт), то пусковые токи не окажут существенного влияния на работу стабилизатора. Поэтому для защиты электронной платы управления котла нам хватит защитного устройства, мощностью 150 Ватт помноженной на коэффициент трансформации 1,35 = 200 Ватт. По модельному ряду подбираем ближайший подходящий по мощности прибор – 500 Ватт (ВА).

Если же мы будем подбирать защиту для холодильника или водяного насоса, в которых стоят более мощные электромоторы, то в этом случае активную мощность нужно помножить минимум на 3. Так мы учтем большие пусковые токи, инициирующие реактивную мощность.

Нужно сказать несколько слов и о том, какой стабилизатор напряжения лучше выбрать: рассчитанный на весь дом или на защиту одного чувствительного устройства (котла, телевизора, кондиционера, холодильника)? Очевидно, что один общий стабилизатор, обслуживающий все жилище, выгоднее. В этом случае вам не придется думать, в какую розетку включить конкретный прибор или периодически носить за ним «индивидуальное средство защиты».

Подбор общего стабилизатора для дома ведут, суммируя активные мощности всех бытовых приборов (с учетом реактивных нагрузок). Полученную цифру умножают на коэффициент трансформации и на коэффициент, учитывающий вероятность одновременного включения всех приборов (0,7).

Например, для дома с пониженным напряжением 170 Вольт данный расчет будет выглядеть следующим образом (с учетом пускового тока):

стиральная машина (2,3 кВт) + холодильник (0,6 кВт) + LCD телевизор (0,3 кВт) + водяной насос (1,2 кВт) + газовый котел (0,1кВт) + кондиционер (2,5 кВт) + освещение (0,7 кВт) = 7,7 кВт х 1,35 (коэффициент трансформации) х 0,7 (вероятность одновременной включения) = 7,27 кВт. Значит, нужно купить защитный прибор мощностью не менее 7,5 кВт.

Общий внутридомовой стабилизатор подключают в сеть сразу после счетчика электроэнергии. От него запитываются все потребители. Как правило, в таких устройствах имеются автоматы защиты. Они отключают ток в том случае, когда скачок или падение напряжение превышает порог стабилизации.

Основные параметры стабилитрона

Стабилизатор тока на транзисторе

Для создания рабочей схемы применяют обратное включение полупроводникового прибора. На анод подают «минус» источника питания. На катод – «плюс».

ВАХ стабилитрона

С помощью измерительной аппаратуры можно составить по точкам распределение электрических величин. На рисунке отмечены основные характеристики стабилитрона, которые нужно учитывать при расчете стабилизатора напряжения. Показаны уровни, определяющие:

  • начало пробоя;
  • рабочий режим (Uст, Iст);
  • максимально допустимое значение (Uобр, Imax).

Серийные приборы рассматриваемой категории способны стабилизировать напряжение в диапазоне от 0,6 до 210 V. Допустимый ток (Imax) ограничен мощностью рассеивания. Для улучшения этого параметра применяют монтаж на радиаторе через слой термопасты, эффективную пассивную и принудительную вентиляцию. Отмеченное на графике значение Imin соответствует уровню сохранения работоспособности перехода в обычном режиме. Для стабилизации используют участок ΔU, который характеризуется незначительным изменением напряжения при достаточно большом увеличении силы тока в обратном направлении (ΔI).

Параметры стабилитрона

Его главные параметры можно увидеть по характеристике напряжения и тока.

  • Напряжение стабилизации является напряжением на стабилитроне при прохождении тока стабилизации. Сегодня производятся стабилитроны с таким параметром, равным 0,7-200 вольт.
  • Наибольший допустимый ток стабилизации. Он ограничен величиной наибольшей допустимой мощности рассеивания, которая зависит от температуры внешней среды.
  • Наименьший ток стабилизации, рассчитывается наименьшей величиной тока, протекающего через стабилитрон, при этом сохраняется действие стабилизатора.
  • Дифференциальное сопротивление – это величина, равная отношению приращения напряжения к малому приращению тока.

Стабилитрон, подключенный в схеме как простой диод в прямом направлении, характеризуется величинами постоянного напряжения и наибольшим допустимым прямым током.

Принцип стабилизации тока

Целевое назначение специальной схемы – регулирование источника питания в автоматическом режиме для поддержания стабильных параметров цепей нагрузки. Основной компонент – достаточно мощный полупроводниковый прибор, ограничитель силы тока на выходе блока питания.

Требования к управляющему элементу

Критерии выбора можно сформулировать, если известны параметры силы тока (ампер). Однако даже без конкретного технического задания несложно перечислить базовые требования:

  • ток в контрольной цепи поддерживается с определенной точностью;
  • следует компенсировать перепады потребляемой мощности;
  • корректирующие изменения должны выполняться достаточно быстро;
  • для автоматической настройки оптимального режима и улучшения защиты от помех нужна организация обратной связи.

Суть стабилизации

Для уточнения функциональности управляющего элемента необходимо отметить особенности типичной нагрузки. Интенсивность излучения светодиода, например, существенно зависит от температуры в процессе эксплуатации. Соответствующим образом изменяется мощность потребления. При увеличении тока уменьшается напряжение.

Важно! Если установить обратную связь (отрицательную), отмеченное изменение будет регулировать рабочий режим управляющего устройства. В частности, при увеличении напряжения между затвором и стоком полевого транзистора ток через исток уменьшается. Тем самым без иных дополнительных действий обеспечивается стабилизация выходных параметров источника

Тем самым без иных дополнительных действий обеспечивается стабилизация выходных параметров источника.

Расчет делителя напряжения на резисторах

Такие схемы используют для уменьшения выходного напряжения до нужного значения. Деление выполняют в пропорциях, которые предусмотрены конструкторским проектом. Необходимо учитывать реальное влияние нагрузки. Уточняют мощность потребления, чтобы подобрать подходящий резистор нижнего плеча.

В простейшей схеме применяют два резистора. При необходимости количество компонентов увеличивают для обеспечения ступенчатой регулировки. Чтобы рассчитать делитель напряжения, калькулятор онлайн использовать не обязательно. Приведенная ниже подробная инструкция поможет получить точный результат собственными силами за несколько минут.

Для примера взяты определенные значения:

  • Входного постоянного напряжения (Uвх) – 20 Вольт;
  • Сопротивления резисторов R1 и R2 – 20 и 50 кОм, соответственно.

Самостоятельный расчет резистивного делителя онлайн

I=Uвх/ (R1 R2)

https://www.youtube.com/watch?v=upload

20/ (20 000 50 000) = 0,000286 А

На отдельных элементах падения напряжения составят:

  • UR1 = 0,000286 * 20 000 = 5,72 V;
  • UR2 = 0,000286 * 50 000 = 14,3 V.

Соответствующие программы предлагают посетителям «Паяльник» и другие специализированные сайты бесплатно и без регистрации. В стандартной форме заполняют «окошки» с напряжением на входе и выходе. После подтверждения автоматически выполняется расчет с отображением значений электрических сопротивлений резисторов и рассеиваемых мощностей.

Как понятно из примера, основные формулы не отличаются повышенной сложностью. Однако автоматизированный расчет делителя напряжения на резисторах онлайн (online) позволяет выполнять многократные теоретические эксперименты с минимальными затратами времени. Такой инструмент пригодится для точного определения основных параметров делителя.

Входное напряжение Uвх, VЭл. сопротивление, ОмРассеиваемая мощность, ВтНапряжение на выходе Uвых, V
R1R2R1R2
12100020000,0160,0328
125000045450,002420,000221
12500005500000,000020,0002211,5
121002000,160,328

Приведенные цифры демонстрируют, что для существенного уменьшения Uвых сопротивление R1 должно быть значительно больше R2. Обратные пропорции применяют для примерного равенства напряжений на входе и выходе.

P=I2*R.

Калькулятор расчета мощности стабилизатора напряжения для газового котла

Многие современные модели газовых котлов оснащены достаточно сложной системой электронного управления. Она обеспечивает поддержание заданного режима работы системы, управляет циркуляционными насосами, вентиляторами подачи воздуха в камеру сгорания, дает команду на срабатывание различных электромагнитных клапанов или кранов, иногда сохраняет в памяти необходимые настройки и даже способна анализировать внешние данные для выработки наиболее оптимального алгоритма всей системы отопления в целом.


Калькулятор расчета мощности стабилизатора напряжения для газового котла

Безусловно, это все удобно, но если в сети питания нет достаточной стабильности напряжения, то система управления может начать сбоить, а то и вовсе «зависать». Чтобы избежать подобных ситуаций, настоятельно рекомендуется оснащать подобное котельное оборудование специально выделенным для него стабилизатором. А правильно выбрать подходящую к конкретным условиям модель поможет калькулятор расчета мощности стабилизатора напряжения для газового котла.

Цены на стабилизаторы для газового котла

стабилизатор для газового котла

Если по ходу расчетов возникнут вопросы, то под калькулятором даны необходимые разъяснения по работе с ним.

Калькулятор расчета мощности стабилизатора напряжения для газового котла

Перейти к расчётам

Несколько необходимых пояснений к проведению расчетов

Критериев выбора стабилизатора напряжения – немало. Одним из них является его мощность. Если быть точным, то разговор, конечно, идет о вольт-амперной характеристике, то есть не о полезной мощности (ватт), а о тех параметрах выходного тока (вольт-ампер), которые прибор способен поддерживать в нормальном режиме своей работы. Но все равно исходными параметрами для расчета, безусловно, будут значения потребляемой мощности подключенных к стабилизатору приборов.

Простое суммирование – даст крайне неточный результат. Дело в том, что большинство приборов потребляют не только полезную, но еще и реактивную мощность. Она рассчитывается по специальной формуле, и ее следует принимать в расчет. В нашем калькуляторе это учтено.
Далее, при трансформации напряжения до необходимого номинала, обязательно происходят потери мощности, и они тем больше, чем значительнее отклонение от установленных 220 В. Поэтому прежде чем приступать к расчетам, рекомендуется провести своеобразное «исследование» — организовать измерение напряжения в сети, например, утром, днем и в вечерние пиковые часы потребления, в течение нескольких дней. Должна получиться наглядная картина — и значение, наибольшим образом отличающееся от номинала, и станет исходным параметром для расчетов.
В калькуляторе будет запрашиваться потребляемая мощность котла

ВАЖНО: не путайте с тепловой мощностью котельного оборудования! Потребляемая мощность котла указывается в его паспорте, и касается исключительно его электротехнических параметров.
Если к стабилизатору планируется подключение внешних (не входящих в компоновку котла) циркуляционных насосов, то учитывается и их потребляемая мощность. В калькуляторе достаточно указать количество насосов.
Наконец, к стабилизатору иногда подключают и другое внешнее оборудование, необходимое для работы котельной (например, это может быть принудительная вентиляция)

В этом случае в специальном поле калькулятора необходимо будет указать суммарную потребляемую мощность всех дополнительных приборов.

Результат будет получен в вольт-амперах. Он станет одним из ключевых критериев при дальнейшем выборе необходимой модели стабилизатора.

Стабилизатор напряжения на стабилитроне

Стабилитрон обеспечивает гораздо более высокий уровень стабильности питания, чем может быть достигнут, например, с помощью одной только схемы выпрямителя и фильтрующего конденсатора. В частности, за счет соответствующего легирования полупроводников можно получить практически вертикальный наклон кривой, получая стабилизированное напряжение с незначительной и постоянной пульсацией, которая не изменяется при изменении входного напряжения.

Далее показана схема простейшего стабилизатора напряжения, основанного на стабилитроне. Использовался стабилитрон с VZ = 12 В, а значение последовательного резистора R можно определить по формуле, как показано на рисунке, где Vi — входное напряжение, Vo — стабилизированное выходное напряжение (в данном случае 12 В), а IL — ток, потребляемый нагрузкой.

Без нагрузки (IL = 0) весь ток из схемы будет проходить через стабилитрон, который, в свою очередь, рассеивает его до максимальной своей мощности. Следовательно необходимо тщательно выбирать значение последовательного сопротивления, чтобы не превышать максимальную мощность, которую стабилитрон может рассеять когда к нему не подключена нагрузка. Эта схема способна генерировать ток не более десятков миллиампер, она часто используется для смещения базы транзистора или в качестве входа в операционный усилитель, тем самым получая более высокий выходной ток от стабилизатора.

На схеме показан стабилизатор на шунтирующем транзисторе, способный увеличивать мощность, подаваемую на нагрузку. Выходное напряжение VO определяется формулой: VO = VZ + VBE.

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий