Таблица категорий и способов разработки почвы.
Категория грунтов | Типы грунтов | Плотность, кг/м3 | Способ разработки |
1 | Песок, супесь, растительный грунт, торф | 600…1600 | Ручной (лопаты), машинами |
2 | Легкий суглинок, лёсс, гравий, песок со щебнем, супесь со строймусором | 1600… 1900 | Ручной (лопаты, кирки), машинами |
3 | Жирная глина, тяжелый суглинок, гравий крупный, растительная земля с корнями, суглинок со щебнем или галькой | 1750… 1900 | Ручной (лопаты, кирки, ломы), машинами |
4 | Тяжелая глина, жирная глина со щебнем, сланцевая глина | 1900…2000 | Ручной (лопаты, кирки, ломы, клинья и молоты), машинами |
5…7 | Плотный отвердевший лёсс, дресва, меловые породы,сланцы, туф, известняк иракушечник | 1200…2800 | Ручной (ломы и кирки, отбойные молотки), взрывным способом |
8…11 | Граниты, известняки, песчаники, базальты, диабазы, конгломерат с галькой | 2200…3000 | Взрывным способом |
Как определить тип грунта
Все грунты делятся на две основные группы:
- Скальная почва — грунты, обладающие жесткой структурой, они слабо подвержены размытию грунтовыми водами, не промерзают и не склонны к пучениям. Несущие характеристики таких грунтов максимальны, но в Московской области они практически не встречаются;
- Нескальная почва — грунты без жестких структурных связей, сюда относится большая часть знакомых всем осадочных пород — глинистый, песчаный, суглинистый грунт, супесь.
Рис. 1.3: Пробные заборы грунта из разных шурфов (пробных скважин)
В свою очередь нескальная почва делится на следующие типы грунтов:
- Крупнообломочный грунт — в такой почве содержится большое количество крупных вкраплений горных пород — щебня, гравия либо гальки. Это один из лучших вариантов для строительства фундаментов, однако погружения свай в такие грунты сопровождается дополнительными сложностями;
- Песчаники — содержат фракции песка размером от 0.1 до 2 миллиметров, пластичность практически отсутствует. Несущая способность песчаных грунтов непосредственно зависит от размера песчинок, чем они больше, тем лучше почва подходит для строительства фундаментов;
- Глинистые — основной вид связного грунта. Главный недостаток глинистой почвы — склонность к впитыванию влаги: при высоком уровне грунтовых вод поры между частицами глины наполняются влагой, грунт при замерзании изменяется в объеме и оказывает на фундамент сильные выталкивающие воздействия;
- Плывуны — вязкая почва, состоящая из мелких частиц песка и глины. Данный грунт не используется в качестве основания под фундаменты, поскольку ему свойственны сильные горизонтальные сдвиги и отсутствие постоянной структуры;
- Пылевато-глинистые — почва, на которой достаточной несущей способностью обладают только свайные фундаменты глубокого заложения, опирающиеся на нижерасположенные пласты почвы, поскольку верхние слои грунта дают сильную усадку.
Совет эксперта! Определение типа грунта на строительном участке должно выполняться в результате геодезических исследований, в процессе которых берется забор проб почвы, характеристики которой анализируются в строительной лаборатории с помощью специального оборудования.
Рис. 1.4: Схема распространения разных видов грунтов на территории России
При отсутствии возможности провести геодезию грунтов можно попытаться сделать это самостоятельно, однако за расчеты фундамента на основе данных о грунте, полученных кустарным способом, не возьмется ни одна серьезная проектировочная организация.
Для этого вам потребуется на строительном участке с помощью обычного садового бура сделать скважину глубиной в два метра. По внешнему виду породы, извлекаемой на поверхность в процессе бурения, определите тип грунта:
- Глинистый — влажная глина пластична, из нее можно слепить шарик, который при сжатии формирует комок не покрывающийся трещинами; сухая глина твердая, ее куски достаточно сложно разбить даже лопатой. Цвет — от желтоватого до коричневого;
- Суглинистая почва — низкопластичный грунт даже в влажном состоянии, при сдавливании из шарика получается лепешка с трещинами по краям. В составе содержит до 30% глины;
- Супеси — непластичный грунт, в сухом состоянии крошится и рассыпается, включает до 10% глины;
- Песчаная почва: пылеватая — визуально схожа с мукой либо пылью; мелкий песок — отдельные песчинки практически не различаются визуально; средний песок — размер фракций аналогичен зернам проса (до 2.5 мм); крупный — размер песчинок аналогичен размерам гречневой крупы (до 5 мм);
- Гравелистый грунт — содержит каменные вкрапления размером с небольшой грецкий орех;
- Щебенистая почва — свыше 50% массы такой почвы представлено щебенкой размером аналогичной большому ореху.
Важно! Информация о глубине промерзании почвы в Вашем регионе и о том, как её определить: Глубина промерзания почвы
Уточнённая таблица с поправками на текучесть и пористость грунта
Существет ещё одна таблица несущей способности, позволяющая более точно определить цифры на участке, где известны коэффициенты пористости и показатели текучести почвы.
Влияние коэффициента текучести грунта на его несущую способность указаны в таблице. Средняя текучесть грунта зависит от его типа и коэффициента водонасыщения. Эти расчёты выполнить достаточно трудно, поэтому размещаем таблицы, которые описывают поведение образца грунта, характеризующее его текучесть.
Также расчетное сопротивление зависит от коэффициента пористости Е, который нужно устанавливать с помощью экспериментального взятия проб непосредственно на будущей строительной площадке.
Для теста потребуется взять кубик грунта 10х10Х10 см с объёмом О1 = 1000 см³ так, чтобы он не рассыпался. Далее этот кубик взвешивается и определяется его масса (М), после чего грунт измельчают. Затем, с помощью мерного стакана устанавливается объём измельченного грунта также в кубических сантиметрах (О2).
Далее нужно узнать объёмный вес исходного кубика (ОВ1) и измельченного грунта без пор (ОВ2). Для этого следует определенную вначале массу (М) разделить на (О1), чтобы получить (ОВ1) и затем разделить эту же величину (М) на (О2), чтобы получить (ОВ2). Исходный объём О1 изначально известен и равен 1000 см³, а объём измельченного грунта О2 берется из опыта с мерным стаканом.
Осталось только рассчитать пористость Е, которая равна 1 — (ОВ1/ОВ2)
Теперь, зная коэффициент текучести и пористость грунта, можно исходя из табличных цифр с определенной точностью сказать, какая именно несущая способность является расчетной именно для вашего участка. Если вы использовали экспериментальное выявление пористости, то убедитесь, что было проведено хотя бы 3 опыта, чтобы получить нужную величину с достаточно высокой точностью. При желании получить максимально близкие к реальности данные, используйте специальный калькулятор, где есть возможность указывать все влияющие на конечную цифру коэффициенты вот здесь.
Прибор для определения несущей способности грунта
При выборе типа и параметров фундамента для строительства дома необходимо знать несущую способность грунтана строительном участке. В первую очередь исследуется тип грунта, затем определяется его несущая способность.
Для чего нужно определять несущую способность
Грунт состоит из твердых частиц и пор, заполненных водой или воздухом. Под действием нагрузки от дома объем грунта меняется за счет изменения объема пор – он уплотняется, а его пористость сокращается.
При расчете нагрузок интерес для строителя представляют предельные нагрузки, т. е. нагрузки, увеличение которых приводит к потере устойчивости массива грунта.
Чаще всего нарушенное состояние равновесия приводит к большой осадке грунта и его выпору из-под фундамента, смещению конструкций. Значительное смещение конструкций губительно для большинства сооружений
Поэтому так важно определить максимально возможную безопасную для грунта нагрузку, которая не нарушит его равновесие
Морозное пучение грунта
Каждая постройка отличается своим весом, который оказывает нагрузки на основание постройки. Грунт начинает этим нагрузкам сопротивляться. Если сила такого сопротивления выше нагрузки от дома, то в этом случае постройка будет стабильной и простоит много лет. Если же сопротивление грунта ниже нагрузок от веса дома, то постепенно сооружение начнет «тонуть» в грунте и неизбежно разрушится. Это объясняется тем, что часть дома начинает проседать, в то время, когда другая сторона остается на своем месте. Это провоцирует трещины и деформации.
В зимнее время на фундамент также оказывается больше нагрузок. Когда влага в грунте замерзает, она начинает расширяться и с огромной силой давит на основание. Такое явление называется морозным пучением грунта.
Скриншот канала VashFundament https://www.youtube.com/watch?v=5O6t7SoYMHY
При таком давлении может подняться даже самая грузная постройка. Поэтому бороться с морозным пучением совершенно бесполезно. Придется приспособиться.
Расчет несущей способности сваи в конкретных условиях.
Перед началом строительства дома из пеноблоков были проведены исследования грунта на глубине 3 метров. Результаты показали следующее распределение почв:
- 0-2 метра – суглинистые почвы;
- 2-3 метра – глинистые почвы.
Расчет несущей способности сваи по грунту зависит от параметров самой опоры. В соответствии со Строительными правилами «Свайные фундаменты» предположим первоначально ее длину 3 метра. Минимальный рекомендуемый диаметр для таких опор составляет 300 мм.
Исходя их геометрии и почвенных условий, можно рассчитать несущую способность сваи по ее торцевой части и боковой поверхности. Для этого высчитаем площадь нижнего конца опоры:
Sторца=3,14D2/4=3,13*0,3*0,3/4=0,07,
где D – диаметр круга. Следующий параметр, необходимый для определения несущей способности свай – периметр опоры:
U бок=2*3,14*R=2*3,14*0,15=0,94.
Исходя из перечисленного, несущая способность буронабивной сваи по грунту будет определяться по следующей формуле:
Pтор=0,7Pнорм*S=0,7*90*0,07=4,41т,
где Pтор – несущая способность по торцу сваи, 0,7 – общепринятый коэффициент по грунту, Pнорм – нормативная несущая способность (табличная величина из соответствующих справочников), S – площадь основания. Аналогично рассчитаем несущую способность буронабивной сваи по ее боковой поверхности:
Pбок=0,8*U*fiн*h,
где Pбок – несущая способность по боковой поверхности сваи, 0,8 – коэффициент по условиям работы сваи в почве, U – периметр боковой поверхности, fiн – сопротивление грунта воль боковой поверхности (также табличная величина, зависящая от вида грунта и глубины его расположения), h – высота того или иного слоя грунта, через который проходит свая. Подставляя известные и рассчитанные величины получим:
Pбок=0,8* (2,8*2 + 4,8*1)*0,942=7,8т.
Исходя из проведенных вычислений, можем выполнить определение несущей способности свай. Для этого достаточно суммировать Рбок и Ртор:
Р=Рбок+Ртор=4,41+7,8=12,21т.
То есть каждая свая с указанными выше параметрами в том грунте, который располагается в зоне строительства согласно нашему примеру, способна выдержать нагрузку в 12 тонн 210 кг. Исходя из этой величины, необходимо рассчитать необходимое и достаточное количество опор буронабивного фундамента. Для этого определим общую массу строения.
Пример расчета несущей способности свай
Вес дома определяется как сумма веса всех входящих в него частей – перекрытий, перегородок, стен, стропильной системы, кровельного материала, переменной нагрузка от снега и ветра, массы отделки снаружи и внутри строения, а также предполагаемой к установке в доме мебели и бытовой техники. Предположим, что посчитав все искомые величины, получили общую массу строения, равную 124 тонны.
Следующий необходимый параметр – длина стен и перегородок, под которыми предполагается установка свай. Данная величина позволит распределить опоры дома равномерно с равным шагом. Предположим, что длина стен составила 29 метров. Тогда нагрузка на 1 п.м. будет определяться по формуле:
Q=124/29=4,3 т.
Шаг установки опор определим как отношение несущей способности сваи на величину Q:
L=P/Q=12,21/4,3=2,8
Используя полученные данные, рассчитаем и количество опор буронабивного свайного фундамента через отношение периметра стен к шагу установки опор:
N=29/2,8=10,3.
Принимаем ближайшее большее количества для получения определенного запаса прочности фундамента.
Таким образом, даже не обладая необходимым инженерным строительным образованием можно самостоятельно рассчитать несущую способность свай фундаментов того или иного вида, а также шаг установки опор и их количество. Необходимо это и для контроля работ, проводимых нанятой строительной бригадой, и для предварительного экономического расчета расходов на строительство основания дома.
Несущая способность грунтов.
Несущая способность грунтов – это одна из его основных характеристик, которую необходимо знать при строительстве дома, она показывает какую нагрузку может выдержать единица площади грунта и измеряется в кг/см2 или т/м2. По несущей способности грунта определяют, какой должна быть опорная площадь фундамента дома: чем хуже способность грунта выдерживать нагрузку, тем больше должна быть площадь фундамента. Сама несущая способность грунта зависит от трех факторов: тип грунта, степень его уплотненности и насыщенность грунта влагой. Увеличение влажности грунта снижает его несущую способность в несколько раз. Только крупные пески и пески средней крупности не меняют свои свойства при увеличении влажности. Избыточная влажность грунта, скорее всего, связана с высоким уровнем грунтовых вод. Чтобы узнать несущую способность грунта не обязательно обращаться за помощью к геологам, в случае самостоятельного строительства дома можно определить тип грунта на глаз. Для этого простым земляным буром можно пробурить в земле скважину глубиной 2 м или выкопать яму лопатой. При этом сразу будет понятно, какой грунт находится на этой глубине и насколько он увлажнен. Далее по типу и увлажненности грунта определить его несущую способность. На территории нашей страны в основном преобладают песчаные и глинистые грунты, за исключением болотистой местности с просадочными торфяными грунтами, а также горных хребтов и возвышенностей со скальными грунтами.
Отличить песок от глины не составляет труда: в песке ясно видны отдельные песчинки, при растирании песчаного грунта меду ладонями они отчетливо чувствуются. Крупный песок имеет размер частиц от 0,25 до 5 мм, такие частицы хорошо видны невооруженным глазом, а песок средней плотности имеет размер песчинок до 2 мм. Супесь содержит 3-10% глинистых частиц, в сухом состоянии она крошится, если скатать из нее шарик, то он рассыпается при легком давлении на него. Суглинок содержит от 10% — 30% глинистых частиц, обладает большей пластичностью, чем супесь. Если из суглинка сделать шар и раздавить его, то он превращается в лепешку с трещинами по краям. Глина – наиболее пластичный грунт, содержит более 30% глинистых частиц ,если раздавить шар, сделанный из глины, то он превратится в лепешку, на краях которой не будет трещин. Есть еще один метод определения типа глинистого грунта.
Исследуемый образец грунта укладываем в стеклянную банку на ¼ её высоты; доливаем в банку воды до уровня ¾ высоты; добавляем в воду 1 чайную ложку средства для мытья посуды; закрываем банку крышкой и встряхиваем содержимое в течение 10 минут. За это время образец грунта разделится на составляющие; банку ставим и через 1 минуту отмечаем на ней маркером уровень песка, который осел на дне; уровень ила отмечаем через 2 часа; ждем пока вода станет прозрачной и отмечаем уровень слоя глины. Процесс осадки глины достаточно длительный и может занять от 2 до 7 дней; находим толщину слоя песка, ила и глины. Например: уровень песка через 1 минуту составил 6 см, уровень ила 7 см от дна банки, уровень глины 10 см от дна банки. vk.com/postroim_svoi_dom Тогда: толщина слоя песка 6 см, толщина слоя ила 1 см (7-6=1), толщина слоя глины 3 см (10-7=3), а общая толщина осадка 10 см; вычисляем относительную величину каждого вида осадка (в процентах): толщину слоя песка/ила/глины делим на общую толщину осадка, затем умножаем на 100 процентов: 6/10*100% =60% — содержание песка в %;
1/10*100%=10% — содержание ила (пыли) в %;
3/10*100%=30% — содержание глины в %.
Расчетное сопротивление грунта на разной глубине.Величины расчетного сопротивления грунтов (R0), приведенные ниже , даны для глубины заложения фундамента 1,5…2 м.
Если глубина заложения фундамента меньше чем 1,5 м. то расчетное сопротив¬ление грунта (Rh) определяется по формуле: Rh = 0,005R0(100 +h/3), где h — глубина заложения фундамента в см. Пример 1.Глинистый грунт на глубине 0,5 м при R0=4 кг/см2 будет иметь расчетное со¬противление грунта Rh = 2,33 кг/см2. Если глубина заложения фундамента больше чем 2 м. то расчетное сопротивление грунта (Rh) определяется по формуле: Rh = R0 + kg(h — 200), где h — глубина заложения фундамента в см, g — вес столба грунта, расположенного выше глубины заложения фундамента (кг/см2); к — коэффициент грунта (для песка — 0,25; для супеси и суглинка — 0,20; для глины — 0,15). Пример 2.Глинистый грунт на глубине 3 м при R0=4 кг/см2 будет иметь расчетное сопро¬тивление Rh = 10,3 кг/см2. Удельный вес глины — 1,4 кг/см2, а вес столба глины высо¬той 300 см — 0,42 кг/см2.
Исследование грунта
Исследования состояния грунта важный этап в подготовки к монтажу фундамента. Так, лучше всего обратиться к помощи специализированных компании, оказывающих данные услуги на профессиональной основе. Однако, первичные работы можно провести и самостоятельно — воспользовавшись ориентировочным методом исследования и анализа грунта. Рассмотрим поэтапно:
Для извлечение проб грунта необходим бур
Важно помнить, что от этажности будущего здания зависит глубина на которую нужно проделать лунку.
Так, для одноэтажного дома — это 2-3 метра, для двухэтажного дома — 3-4 метров. Однако, если планируется укладка глубокого фундамента для подвала или цокольного этажа, то бурение самостоятельно выполнить не получиться, так как в этом случае глубина будет соответствующая.
Возникает другой вопрос: достаточно ли одного шурфа? Однозначно нет и это объясняется просто
Фундамент будет залегать на достаточной глубине и в разное время года на него будет воздействовать мороз или влага, что в свою очередь может привести к образованию трещин, сколов, дыр как на самом фундаменте, так и на стенах сооружения.
Как бы не было зафиксировано в СниПах о том, что для небольших одноэтажных достаточно 1-2 шурфов, лучше всего заложить 4-5 для надежности.
Уточнённая таблица с поправками на текучесть и пористость грунта
Существет ещё одна таблица несущей способности, позволяющая более точно определить цифры на участке, где известны коэффициенты пористости и показатели текучести почвы.
Prev
1of1
Next
Влияние коэффициента текучести грунта на его несущую способность указаны в таблице. Средняя текучесть грунта зависит от его типа и коэффициента водонасыщения. Эти расчёты выполнить достаточно трудно, поэтому размещаем таблицы, которые описывают поведение образца грунта, характеризующее его текучесть.
Prev
1of1
Next
Prev
1of1
Next
Также расчетное сопротивление зависит от коэффициента пористости Е, который нужно устанавливать с помощью экспериментального взятия проб непосредственно на будущей строительной площадке.
Для теста потребуется взять кубик грунта 10х10Х10 см с объёмом О1 = 1000 см³ так, чтобы он не рассыпался. Далее этот кубик взвешивается и определяется его масса (М), после чего грунт измельчают. Затем, с помощью мерного стакана устанавливается объём измельченного грунта также в кубических сантиметрах (О2).
Далее нужно узнать объёмный вес исходного кубика (ОВ1) и измельченного грунта без пор (ОВ2). Для этого следует определенную вначале массу (М) разделить на (О1), чтобы получить (ОВ1) и затем разделить эту же величину (М) на (О2), чтобы получить (ОВ2). Исходный объём О1 изначально известен и равен 1000 см³, а объём измельченного грунта О2 берется из опыта с мерным стаканом.
- ОВ1 = М/О1
- ОВ2 = М/О2
Осталось только рассчитать пористость Е, которая равна 1 — (ОВ1/ОВ2)
Е = 1 — (ОВ1/ОВ2)
Определить глубину несущего слоя основания, можно следующим способом:
- Выкопать яму в одном из будущих углов дома на предполагаемую глубину заложения фундамента не выше глубины промерзания грунта (если Вы добрались до скального грунта, ну там сплошные камни и все такое прочее, можете смело делать фундамент и все последующие шаги пропустить).
- Взять кусок арматуры диаметром 8-10 мм, длиной 1 м. Торцы арматуры должны быть плоскими и перпендикулярными оси арматуры.
- Поставить арматуру на дно ямы и аккуратно положить или поставить сверху кирпич. Чем больше времени кирпич будет давить на основание, тем точнее будет полученный результат.
Площадь арматуры диаметром 10 мм – 0.785 см2. Вес кирпича около 3.5-5 кг (если есть возможность измерьте более точно). Соответственно максимальное давление на основание от 1 кирпича и 1 метра арматуры будет около 5/0.785 + 100х0.785х0.0078 = 7.0 кг/см2 (0.0078 кг/см3 – удельный вес железа).
Несущая способность у разных грунтов разная, наибольшей несущей способностью обладают скальные грунты, наименьшей влажная глина:
- Галечниковые (щебенистые) грунты с песчаным заполнителем — 6 кг/см2;
- галечниковые (щебенистые) с пылевато-глинистым заполнителем — 4 кг/см2;
- гравийные (дресвяные) с песчаным заполнителем — 5 кг/см2;
- гравийные (дресвяные) с пылевато-глинистым заполнителем — 3,5 кг/см2;
- песчаные грунты крупной фракции — 5 кг/см2;
- песчаные грунты средней фракции — 4 кг/см2;
- маловлажные песчаные грунты мелкой фракции — 3 кг/см2;
- влажные и насыщенные водой песчаные грунты мелкой фракции — 2 кг/см2;
- песчаные маловлажные пылеватые грунты — 2,5 кг/см2;
- песчаные влажные пылеватые грунты — 1,5 кг/см2;
- песчаные насыщенные водой пылеватые грунты — 1 кг/см2;
- супесь плотная — 3 кг/см2;
- супесь мягкая маловлажная — 2,5 кг/см2;
- супесь мягкая влажная — 2 кг/см2;
- суглинок плотный маловлажный — 3 кг/см2;
- суглинок плотный влажный — 2,5 кг/см2;
- суглинок мягкий маловлажный — 2,5 кг/см2;
- суглинок мягкий влажный — 1,8 кг/см2;
- суглинок очень мягкий маловлажный — 2 кг/см2;
- суглинок очень мягкий влажный — 1 кг/см2;
- глина плотная маловлажная — 6 кг/см2;
- глина плотная влажная — 4 кг/см2;
- глина мягкая маловлажная — 5 кг/см2;
- глина мягкая влажная — 3 кг/см2;
- глина очень мягкая маловлажная — 3 кг/см2;
- глина очень мягкая влажная — 2 кг/см2;
- глина вязкая маловлажная — 2,5 кг/см2;
- глина вязкая влажная — 1 кг/см2.
По глубине ямки, которую оставила арматура в грунте можно достаточно точно определить несущую способность грунта, а также проседание основания под нагрузкой.
- Если грунт под нагрузкой почти не просел, то у вас достаточно прочный скалистый грунт, на котором можно строить все что угодно. Ширина фундамента может быть минимальной и определяется по конструктивным соображениям.
- Если грунт под нагрузкой просел на глубину менее 5 см, то это можно рассматривать как относительно небольшую осадку основания. Конечно же характеристики грунта по-прежнему остаются неизвестными, Но в целом ситуация выглядит не безнадежно. Можно попробовать определить модуль деформации грунта и его расчетное сопротивления, хотя сделать это будет не просто
- Если грунт под нагрузкой просел на глубину более 5 см, то на таком основании строить дом не желательно, нужно или копать глубже, или укреплять основание: уплотнять, делать песчаную подсыпку, или пропитывать грунт жидким стеклом. А еще лучше все-таки обратиться к специалистам по геологии.
Хорошо бы для дополнительной гарантии испытать грунт не кирпичем, а шлакоблоком. Давление на основание от 1 шлакоблока и 1 м арматуры будет около 20/0.785 + 100х0.785х0.0078 = 26.1 кг/см2. А еще лучше, если где-то неподалеку ходит симпатичная девушка в туфлях на каблуках-шпильках, пусть немного постоит на дне ямы на одной ноге на каблуке. А если потом дом все-таки просядет, то виновата будет девушка.
Теперь, если у вас 2 или 3 вариант, надо хотя бы приблизительно посчитать нагрузку на основание от конструкций дома. Тут все не так просто, нужно учитывать не только вес самого фундамента, стен, перекрытий, крыши и прочих элементов конструкции включая стяжку и кафельную плитку, но также необходимо учитывать временные нагрузки от ветра и снега. Поэтому расчет нагрузки на основание – отдельная тема.
Ну а методика расчета ширины фундамента следующая: определяется вес 1 м/п (100 см) всех конструкций дома в килограммах и это значение делится на 100 и на несущую способность основания (грунта).
Если несущая способность грунта низкая, то имеет смысл делать фундаментную плиту.